Mining fuzzy association rules from low-quality data
نویسندگان
چکیده
Data Mining is most commonly used in attempts to induce association rules from databases which can help decision-makers easily analyze the data and make good decisions regarding the domains concerned. Different studies have proposed methods for mining association rules from databases with crisp values. However, the data in many real-world applications consist of interval and fuzzy values. In this paper we address this problem, and propose a new data-mining algorithm for extracting interesting knowledge from databases with imprecise data. The proposed algorithm integrates imprecise data concepts and the fuzzy apriori mining algorithm to find interesting fuzzy association rules in given databases. Experiments for diagnosing dyslexia in early childhood were made to verify the performance of the proposed algorithm.
منابع مشابه
Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملDeveloping a Course Recommender by Combining Clustering and Fuzzy Association Rules
Each semester, students go through the process of selecting appropriate courses. It is difficult to find information about each course and ultimately make decisions. The objective of this paper is to design a course recommender model which takes student characteristics into account to recommend appropriate courses. The model uses clustering to identify students with similar interests and skills...
متن کاملGenetic learning of the membership functions for mining fuzzy association rules from low quality data
Many methods have been proposed to mine fuzzy association rules from databases with crisp values in order to help decision-makers make good decisions and tackle new types of problems. However, most real-world problems present a certain degree of imprecision. Various studies have been proposed to mine fuzzy association rules from imprecise data but they assume that the membership functions are k...
متن کاملUsing a Data Mining Tool and FP-Growth Algorithm Application for Extraction of the Rules in two Different Dataset (TECHNICAL NOTE)
In this paper, we want to improve association rules in order to be used in recommenders. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Among the data mining methods, finding frequent item sets and ...
متن کاملAn Overview of Mining Fuzzy Association Rules
Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Many types of knowledge and technology have been proposed for data mining. Among them, finding association rules from transaction data is most commonly seen. Most studies have shown how binary valued transaction data may be handled. Transaction data in real-world a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft Comput.
دوره 16 شماره
صفحات -
تاریخ انتشار 2012